python 2.7 - TypeError in Countvectorizer scikit-learn: Expected string or buffer -
i trying solve classification problem. when feed text countvectorizer gives error:
expected string or buffer.
is wrong dataset contains message mixture of number , word special character in message.
sample how message following:
0 have not received gifts ordered ok 1 hth wells idyll mcgill kooky bbc.co 2 test test test 1 test 3 test 4 hello reward points 5 hi, can koovs coupons or vouchers here...
here code used classification:
import pandas pd sklearn.feature_extraction.text import countvectorizer df = pd.read_excel('training_data.xlsx') x_train = df.message print x_train.shape map_class_label = {'checkin':0, 'greeting':1,'more reward options':2,'noclass':3, 'other':4,'points':5, 'referral points':6,'snapbill':7, 'thanks':8,'voucher not working':9,'voucher':10} df['label_num'] = df['final category'].map(map_class_label) y_train = df.label_num vectorizer = countvectorizer(lowercase=false,decode_error='ignore') x_train_dtm = vectorizer.fit_transform(x_train)
you need convert column message
string
astype
, because in data numeric values:
df = pd.read_excel('training_data.xlsx') df['message'] = df['message'].values.astype('unicode') ... ...
Comments
Post a Comment