python - Tensorflow multi-variable logistic regression not working -
i trying create program classify point either 1
or 0
using tensorflow. trying create oval shape around center of plot, blue dots are:
everything in oval should classified 1
, every thing else should 0
. in graph above, blue dots 1
s , red x's 0
s.
however, every time try classify point, choses 1
, if point trained with, saying 0
.
my question simple: why guess 1
, , doing wrong or should differently fix problem? first machine learning problem have tried without tutorial, don't know stuff.
i'd appreciate can give, thanks!
here's code:
#!/usr/bin/env python3 import tensorflow tf import numpy import matplotlib.pyplot plt training_in = numpy.array([[0, 0], [1, 1], [2, 0], [-2, 0], [-1, -1], [-1, 1], [-1.5, 1], [3, 3], [3, 0], [-3, 0], [0, -3], [-1, 3], [1, -2], [-2, -1.5]]) training_out = numpy.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]) def transform_data(x): return [x[0], x[1], x[0]**2, x[1]**2, x[0]*x[1]] new_training_in = numpy.apply_along_axis(transform_data, 1, training_in) feature_count = new_training_in.shape[1] x = tf.placeholder(tf.float32, [none, feature_count]) y = tf.placeholder(tf.float32, [none, 1]) w = tf.variable(tf.zeros([feature_count, 1])) b = tf.variable(tf.zeros([1])) guess = tf.nn.softmax(tf.matmul(x, w) + b) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.matmul(x, w) + b, y)) opti = tf.train.gradientdescentoptimizer(0.01).minimize(cost) init = tf.initialize_all_variables() sess = tf.session() sess.run(init) in range(1000): (item_x, item_y) in zip(new_training_in, training_out): sess.run(opti, feed_dict={ x: [item_x], y: [[item_y]]}) print(sess.run(w)) print(sess.run(b)) plt.plot(training_in[:6, 0], training_in[:6, 1], 'bo') plt.plot(training_in[6:, 0], training_in[6:, 1], 'rx') results = sess.run(guess, feed_dict={ x: new_training_in }) in range(training_in.shape[0]): xx = [training_in[i:,0]] yy = [training_in[i:,1]] res = results[i] # prints `[ 1.]` print(res) # uncomment these lines see guesses # if res[0] == 0: # plt.plot(xx, yy, 'c+') # else: # plt.plot(xx, yy, 'g+') plt.show()
the problem occurs when use softmax_cross_entropy_with_logits. in concrete case, both logits
, labels
should have shape [batch_size, number_of_labels=2]
.
note tensors logits=tf.matmul(x, w) + b
, labels=y
have shape [batch_size, 1]
, tensorflow assuming number_of_labels=1
. that's why guess same.
a) solve problem encoding training_out
one-hot vector. recommend using np.eye()
achieve that:
training_out = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] training_out = numpy.eye(2)[training_out]
then, need make following changes:
y = tf.placeholder(tf.float32, [none, 2]) w = tf.variable(tf.zeros([feature_count, 2])) b = tf.variable(tf.zeros([2])) ... in range(1000): (item_x, item_y) in zip(new_training_in, training_out): sess.run(opti, feed_dict={x: [item_x], y: [item_y]}) ... results = sess.run(guess, feed_dict={x: new_training_in})[:,1]
b) alternatively, use sparse_softmax_cross_entropy_with_logits, allows labels
have shape [batch_size]
. i've tweaked code make work in way:
import tensorflow tf import numpy import matplotlib.pyplot plt training_in = numpy.array( [[0, 0], [1, 1], [2, 0], [-2, 0], [-1, -1], [-1, 1], [-1.5, 1], [3, 3], [3, 0], [-3, 0], [0, -3], [-1, 3], [1, -2], [-2, -1.5]]) training_out = numpy.array([1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]) def transform_data(x): return [x[0], x[1], x[0] ** 2, x[1] ** 2, x[0] * x[1]] new_training_in = numpy.apply_along_axis(transform_data, 1, training_in) feature_count = new_training_in.shape[1] x = tf.placeholder(tf.float32, [none, feature_count]) y = tf.placeholder(tf.int32, [none]) w = tf.variable(tf.zeros([feature_count, 2])) b = tf.variable(tf.zeros([2])) guess = tf.nn.softmax(tf.matmul(x, w) + b) cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(tf.matmul(x, w) + b, y)) opti = tf.train.gradientdescentoptimizer(0.01).minimize(cost) init = tf.initialize_all_variables() sess = tf.session() sess.run(init) in range(1000): (item_x, item_y) in zip(new_training_in, training_out): sess.run(opti, feed_dict={x: [item_x], y: [item_y]}) print(sess.run(w)) print(sess.run(b)) plt.plot(training_in[:6, 0], training_in[:6, 1], 'bo') plt.plot(training_in[6:, 0], training_in[6:, 1], 'rx') results = sess.run(guess, feed_dict={x: new_training_in}) in range(training_in.shape[0]): xx = [training_in[i:, 0]] yy = [training_in[i:, 1]] res = results[i] # prints `[ 1.]` print(res) # uncomment these lines see guesses if res[0] == 0: plt.plot(xx, yy, 'c+') else: plt.plot(xx, yy, 'g+') plt.show()
Comments
Post a Comment