python - scikit learn logistic regression precision calculation weird warning -
using scikit-learn python 2.7 on windows. here code , code has no warning if change precision
precision_weighted
scoring parameter. not know warning mean , reason behind scene explicitly specify average
1 of (none, 'micro', 'macro', 'weighted', 'samples')? in case, want treat samples of equal weight, seems there no such option in 5 choices?
from sklearn import linear_model, datasets sklearn.cross_validation import cross_val_score # import data play iris = datasets.load_iris() x = iris.data[:, :2] # take first 2 features. y = iris.target h = .02 # step size in mesh logreg = linear_model.logisticregression(c=1e5) # create instance of neighbours classifier , fit data. logreg.fit(x, y) print cross_val_score(logreg, x, y, cv=10, scoring="precision") #print cross_val_score(logreg, x, y, cv=10, scoring="precision_weighted")
warning message,
c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) c:\python27\lib\site-packages\sklearn\metrics\classification.py:1203: deprecationwarning: default `weighted` averaging deprecated, , version 0.18, use of precision, recall or f-score multiclass or multilabel data or pos_label=none result in exception. please set explicit value `average`, 1 of (none, 'micro', 'macro', 'weighted', 'samples'). in cross validation use, instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) [ 0.66666667 0.80555556 0.9047619 0.86666667 0.80555556 0.875 0.94444444 0.80555556 0.82222222 0.80555556]
Comments
Post a Comment